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SUMMARY

This paper presents a Lagrangian–Eulerian �nite element formulation for solving �uid dynamics prob-
lems with moving boundaries and employs the method to long wave run-up. The method is based on a
set of Lagrangian particles which serve as moving nodes for the �nite element mesh. Nodes at the mov-
ing shoreline are identi�ed by the alpha shape concept which utilizes the distance from neighbouring
nodes in di�erent directions. An e�cient triangulation technique is then used for the mesh generation
at each time step.
In order to validate the numerical method the code has been compared with analytical solutions and

a preexisting �nite di�erence model.
The main focus of our investigation is to assess the numerical method through simulations of three-

dimensional dam break and long wave run-up on curved beaches. Particularly the method is put to test
for cases where di�erent shoreline segments connect and produce a computational domain surrounding
dry regions. Copyright ? 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

One major challenge when solving �uid mechanics problems numerically is the presence of
boundaries with motions which are unknown a priori. Important examples are surface waves
and �uid–structure interactions, where the �uid motion may be described by the Euler or
the Navier–Stokes equations. Another example is inundation of land by tsunamis and storm
surges, described by depth-integrated long wave equations. While the surface conditions of
the �uid is incorporated in the coe�cients in the depth integrated PDEs, the shoreline motion
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238 J. BIRKNES AND G. PEDERSEN

still has to be found. The moving shoreline is in some respects similar to a free water sur-
face for the Navier–Stokes equations, since the boundary excursions correspond to motion of
material particles with the gravity as restoring force. In both cases, numerical models may be
based on dynamic grids adapting to the boundaries or on �xed grids where the boundaries are
implemented by particular extrapolation techniques. However, there are di�erences as well.
In run-up, there is a singularity in the governing equations at the shoreline, though not in
the physically relevant solutions [1, 2]. In addition, the run-up dynamics are in�uenced by the
beach bathymetry, while a free surface is autonomous. In spite of the similarities of the prob-
lems there have been little interaction between the �elds of long wave run-up and modelling
of general free surface �ow. Herein we apply a recent method for the Navier–Stokes equations
with free surfaces, namely the particle �nite element (PFEM) technique, to long wave run-up.
We have a double motivation for this work. Firstly, we wish to exploit the greater trans-
parency of the shallow water equations which manifest themselves through the availability of
a series of analytical solutions, in order to gain general insight into the performance of PFEM.
Secondly, the long wave run-up is relevant for tsunami and other topics of coastal engineering.
Hence, the problems and methods studied here are also important in their own right.
The �rst general method for inclusion of free surfaces in models of the primitive (Navier–

Stokes or Euler) equations was the marker and cell method (MAC) [3]. It was developed
in the sixties and employs �nite di�erences, a staggered grid and a set of markers. The �rst
problems addressed with this method were the broken dam problem and �ow through an open
sluice gate.
Today the Navier–Stokes models with the volume of �uid (VOF) technique for free surfaces

are widely used. In the VOF technique, which was �rst presented in 1981 [4], the fractional
volume of �uid in each cell is de�ned by a function F . This is updated according to particular
schemes based on the volume �uxes between the cells. Surface cells are then recognized by
F ¡ 1. One problem with this method is that the numerical representation of the free surface
becomes discontinuous. The method has, among other problems, been applied to breaking
waves in the surf zone [5, 6]. In the late eighties, the level set method was presented [7].
Instead of following the interface itself, the method projects the interface onto a surface,
known as the level set function.
A di�erent approach for solving complex problems is the smooth particle hydrodynamics

(SPH) method [8, 9]. Originally, the method was used to solve problems in astrophysics. The
method has later been applied to �uid dynamics problems like run-up, breaking waves and
multi-phase �ows. This method is very well suited for problems with open boundaries, like
free surfaces, while it is more cumbersome to impose boundary conditions on rigid or �exible
bodies.
A new and promising method for solving the Navier–Stokes equations with complex free

surface dynamics, like wave breaking, sloshing, and �uid–structure interactions, is the particle
�nite element method (PFEM), which is also referred to as the meshless �nite element method
(MFEM) [10–12]. This method is based on a mixture of the Lagrangian and the Eulerian
formulation, and boundary nodes are recognized by using the alpha shape concept [13]. Major
advantages of the PFEM are that it retains continuous and well de�ned moving boundaries
and it is, in principle, easy to impose boundary conditions.
Long wave run-up on sloping beaches has been an active branch of hydrodynamic research

for more than half a century. Analytical solutions are available for particular cases. Such
solutions for plane non-breaking waves on an inclined plane are found in Reference [14] and
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PFEM APPLIED TO LONG WAVE RUN-UP 239

have later been extended by Synolakis [15] and others. Run-up of plane and uniform bores are
treated by Keller et al. [16] and Shen and Meyer [17], while very simple expressions for eigen
oscillations in parabolic basins are summarized by Thacker [18]. The analytic solutions are
crucial for our present understanding of run-up on beaches and as test cases for numerical
models.
The most vital line of research on long wave run-up is concerned with Eulerian methods

which involve tracking of the shoreline and extrapolation of velocity �elds onto dry land, in
di�erent varieties and combinations. Shallow water models of this type have been reported by,
among others, References [19–28], while References [29–31] solve di�erent varieties of high
accuracy Boussinesq equations. All of the quoted Eulerian techniques work well for given
applications. Moreover, some of the methods are also su�ciently general and robust for use
in operational tsunami models. Still, in a �xed grid the shoreline representation is generally
coarse, and more or less ingenious extrapolation schemes must be invoked. As a consequence
the accuracy at the shoreline is reduced and the noise produced there must be checked by
�lters or dissipation inherent in the numerical models.
Another type of run-up models is based on automatic tracing of the instantaneous shore-

line by application of Lagrangian coordinates, as in References [32–34]. The last reference
is particularly relevant in the present context, since it employs a traditional �nite element
approach to a standard set of Boussinesq equations. A related approach is the use of the arbi-
trary Lagrangian Eulerian (ALE) methods where the computational domain is mapped onto a
�xed coordinate region, generally consisting of one or more rectangles, but where the nodes
not necessarily correspond to particles. Examples of solutions of the shallow water equations
by ALE techniques are found in References [28, 35–38]. The last of these is a brief paper
where a meshless technique, utilizing smooth shape functions and collocation is applied to
plane waves. Very accurate descriptions of the moving shoreline is reported in some of the
references on Lagrangian or ALE methods for idealized run-up problems. Then the main rea-
son for the preference of Eulerian models is that Lagrangian (and ALE) grids often become
severely distorted, with respect both to aspect ratios and densities, and thus need repeated
re-meshing. In addition bathymetric data, for instance, must be re-interpolated at each time
step. Hence, even though Lagrangian models may give very accurate solutions for the sim-
pler problems they seem somewhat unpromising as general solution strategies. The remedy
may then be to abandon the grid altogether, as in the SPH method, or employ a grid with a
dynamic connectivity as we do here.
Following References [10–12], we convey the basic ideas of PFEM, as well as most of the

particulars, to the nonlinear shallow water equations. We are employing relatively simple, but
illustrative, test problems as eigen oscillations in basins, dam break and run-up, and compare
the PFEM solutions with analytical and numerical solutions obtained by a �nite di�erence
model [39]. Dam break of a cone of water and long wave run-up on two di�erent three-
dimensional beaches have been carried out to demonstrate the capability of the method. The
�rst beach is a headland while the latter is a bay with a hill on the beach. The last case
involves both creation and destruction of shoreline segments.
The numerical model is described in Section 2, together with an analysis of the numerical

scheme. The problems of eigen oscillations in elliptic basins, a broken dam and long wave
run-up have been chosen to verify the numerical model, and are presented in Section 3.
Section 4 presents the simulations of three-dimensional dam break and long wave run-up on
three-dimensional beaches. Finally, the conclusions are summarized in Section 5.
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2. THE LAGRANGIAN–EULERIAN MODEL APPLIED TO THE SHALLOW
WATER EQUATIONS

We mark dimensional quantities by a superscript asterisk and introduce two length scales
L and h0 and one velocity scale c0. L is a typical wavelength, h0 is the maximum depth,
and c0 =

√
gh0 is the shallow water wave speed assuming linear theory. This leads to the

following de�nition of non-dimensional variables:

x∗ = Lx; y∗=Ly; z∗= h0z; t∗=Lc−10 t
�∗ = h0�; v∗= c0v; h∗= h0h

(1)

The z-axis points vertically upward and the xy-plane de�nes the still water level. Assuming
the shallow water theory which is valid under the assumption that U=(h0=L)2 is small, we
arrive at the NLSW (see for example Reference [40]) equations

Dv
dt
= − ∇�+Da(u;�u)i+Da(v;�v)j (2)

D�
dt
= − ∇ · [(h+ �)v] + v · ∇�+Da(�;��) (3)

where v=(u; v) is the horizontal velocity and � is the wave elevation. The operator D=dt ≡
@=@t + v · ∇ is the shallow water version of material di�erentiation and the function Da is
arti�cial di�usion introduced to avoid unphysical oscillations and is given by

Da(u; �)=∇ · (�(x)∇u) (4)

For our numerical implementation of (2)–(3) we have assumed that � is a constant and
preferably as small as possible. Other possible choices would be the streamline di�usion
method or application of a � that depends on the surface gradient [30].
The boundary condition at a moving shoreline is � + h=0 corresponding to a vanishing

�uid depth. Since our set of test cases includes numerical wave tanks with a paddle, vertical
side walls and a beach, we will also need boundary conditions for moving and �xed vertical
boundaries. The general wall boundary condition is v · n= vw where n is the normal vector of
the wall and vw is the velocity of the wall.

2.1. Numerical method

Our strategy for solving the shallow water equations numerically is to mix the Lagrangian
and Eulerian formulations. To this end, Equations (2)–(3) have been written with Lagrangian
accelerations as left-hand sides. We emphasize that the Lagrangian points serve as nodes in
the element mesh which has Eulerian trial functions. This leads to a multi-step algorithm
where one of the crucial steps is the computation of new particle positions, which also serve
as nodes in a FEM discretization according to

Dx
dt
= v (5)

Following Reference [10] on the Navier–Stokes models, we employ �rst-order temporal dis-
cretization. The time advance from tn to tn+1 = tn +�t may then be outlined as follows:

1. Velocities at tn+1 are computed from Equation (2) by inserting old values from time tn

on the right-hand side.

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 52:237–261



PFEM APPLIED TO LONG WAVE RUN-UP 241

2. New node positions are found from (5) by a backward temporal di�erence, inserting
velocities at tn+1 at the right-hand side.

3. A new connectivity of the grid is computed at tn+1, boundary nodes are recognized by
the alpha-shape concept and nodes that are clustered too densely are merged (refer to
Section 2.2).

4. The continuity Equation (3) is then solved on the new mesh. On the right-hand side
velocities and surface elevations are inserted from tn+1 and tn, respectively. In the linear
case this corresponds to a backward temporal di�erentiation.

The velocity component u at time tn can be approximated by un=
∑M

j= 1 u
n
jNj(x), where

unj are the unknown coe�cients and Nj are piecewise linear trial functions which equal unity
at node j and which are zero at the remaining nodes. Similar expressions apply to v and �.
Employing the Galerkin’s method to Equation (2) we arrive at the following equations for
un+1j and vn+1j :

M∑
j= 1

Ai; jun+1j =
∫
�

(
unNi +�t�n

@Ni
@x

)
d�−�t

∫
@�
�nNin1 d� (6)

M∑
j= 1

Ai; jvn+1j =
∫
�

(
vnNi +�t�n

@Ni
@y

)
d�−�t

∫
@�
�nNin2 d� (7)

where Ai; j=
∫
� NiNj d� and n=(n1; n2) is the normal vector at @� which is the boundary of

the �uid domain �. Equations (6) and (7) are employed for i values corresponding to nodes
in the interior or at the moving shoreline. For nodes on a vertical wall or a moving wave
paddle only the tangential component is invoked (see the list of essential boundary conditions
below). Node positions are being updated according to

xn+1j = xnj +�tu
n+1
j and yn+1j =ynj +�tv

n+1
j (8)

in the whole domain, including boundaries. Similarly, the weak formulation of Equation
(3) is

M∑
j= 1

Ai; j�n+1j =
∫
�
[(�n +�tvn+1 · ∇�n)Ni +�t(h+ �n)vn+1 · ∇Ni] d�

−�t
∫
@�
(h+ �n)vn+1 · nNi d�

(9)

This equation is employed for all nodes except those at the moving shoreline and we observe
that the line integral only gives contributions at a moving wave paddle. For readability, the
di�usion terms are omitted in Equations (6), (7) and (9).
The following essential boundary conditions are imposed:

1. Zero normal velocity at �xed walls, v · n=0.
2. At moving walls (piston type paddles), the normal component of the �uid velocity equals
that of the wall; v · n= vw, where vw is the velocity of the wall.
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3. Vanishing �uid depth at the beach, � + h=0, is used to �nd surface elevations at the
shore instead of (9). Preliminary tests with a natural boundary condition at the shoreline
did not give promising results.

The present algorithm is implemented in the Di�pack software environment [41]. The decou-
pled equation sets for u, v and � are solved by the Conjugate Gradient method with RILU
preconditioning [42].

2.2. Computational domain

A triangular �nite element mesh is produced from the positions of the nodes at each time
step. The generation of the mesh is based on Guibas and Stol�’s algorithm [43]. Given a
point set of n nodes, this algorithm produces a mesh at a time cost of order n log n, and
the algorithm has been implemented in the mesh generator Triangle [44, 45]. This generator
produces a convex mesh, meaning that all holes and concave parts of the domain are patched
with elements. Next, there is a need to identify boundary nodes and boundary surfaces and
remove the false elements introduced by the mesh algorithm. To determine the boundary nodes
the alpha shape concept [13] has been applied. Node i will be classi�ed as a boundary node
if there exists a disc, which contains no other nodes than node i, with a given radius ri and
node i at the circumference (refer to Figure 1(a)). In general, the radius of the disc for the
node i is given by ri= �di, where di is the minimum distance between the node considered
and the neighbouring nodes and � is a constant. This introduces an error for the boundary
surface which is of order di, as noted in Reference [10]. Determining the �-coe�cient is not
trivial. A value which is too small, may introduce incorrect boundaries and unphysical holes
in the �uid domain. On the other hand, real holes in the �uid domain may not be recognized
if the �-coe�cient is too large. For our simulations the value of � is of order 2.
When the boundary nodes are detected, all elements outside the �uid domain must be

removed before solving the problem with Galerkin’s method. The elements outside the �uid
domain are identi�ed as elements which only have boundary nodes. This strategy may
remove elements at corners which should be part of the �uid domain, thus extra treatment of
elements de�ning corners is needed. For the present simulations, extra care must be taken

Figure 1. In (a) the �lled bullets indicate the boundary nodes and the empty circles are interior nodes.
Node j is classi�ed as an interior node, since all possible discs contain neighbouring nodes. For node
k, it is possible to place the disc in such a way that it does not contain any other nodes than itself.
Therefore node k is a boundary node. (b) shows the mesh of a square domain with a hole indicated

by the bold line and the grey background.
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Figure 2. An example of merging nodes in the mesh. Left: The two nodes in the middle are identi�ed
as ‘too close’ and will be merged. Right: The result after merging.

when considering the shoreline segments at the walls of the numerical wave tank. As an
example, a mesh of a square domain with a hole is shown in Figure 1(b). As seen, the original
mesh has elements covering the hole marked with a grey background. All the elements inside
the hole have their nodes on the boundary of the hole and must be removed in order to obtain
a mesh with a hole.
Another aspect with the mesh generation is that the nodes are moved at each time step

according to (8). As a consequence, some of the nodes may come very close to each other.
In most cases the triangular mesh generated from this node distribution contains elements
with bad aspect ratios. One way of overcoming this problem is to proceed as Reference [10],
and introduce non-Sibsonian interpolants and polyhedral elements. It is worth noting that the
non-Sibsonian interpolants are reduced to linear interpolants for three node elements and bi-
linear interpolants for four node elements. However, another strategy is feasible. Instead of
using polyhedral elements it is possible to merge nodes which are getting too close to each
other, and obtain a mesh where all the triangular elements have acceptable aspect ratios.
According to the Lagrangian–Eulerian formulation of the problem it is valid to merge nodes
in the computational domain when considering the equations as Eulerian. The new �eld values
in the merged nodes are taken as the average �eld value of the nodes which have been merged.
Following these arguments it is also possible to insert nodes in the �uid domain where the
node distribution is coarse which would be advantageous in many cases. This has not been
implemented here.
Our criterion for detecting and merging nodes is given by

d(i; j)
d0

¡� (10)

where d(i; j) is the distance between node i and j, and d0 is the minimum distance between
two nodes in the initial mesh. The constant � is a number between zero and one. An example
of merging two nodes is shown in Figure 2 where the mesh to the left has two bad shaped
elements. After the merging the mesh has only elements with good aspect ratios as seen in
the right mesh.

2.3. Linear analysis of the numerical scheme

In order to carry out a stability analysis of the scheme (6)–(9) we simplify the problem.
We are assuming constant depth h ≡ 1, one-dimensional motion, and we are linearizing the
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shallow water equations (2) and (3). Solving these equations by Galerkin’s method with linear
elements, constant spacing between the nodes and exact evaluation of all integrals, we obtain
the following system for the nodal values unj and �

n
j :

h
6
(un+1i−1 + 4u

n+1
i + un+1i+1 ) =

h
6
(uni−1 + 4u

n
i + u

n
i+1)− �t

2
(�ni+1 − �ni−1) (11)

h
6
(�n+1i−1 + 4�

n+1
i + �n+1i+1 ) =

h
6
(�ni−1 + 4�

n
i + �

n
i+1)− �t

2
(un+1i+1 − un+1i−1) (12)

Insertion of periodic solutions unj = û exp(i(kxj − !tn)) and �nj = �̂ exp(i(kxj − !tn)) into the
scheme above result in two equations for the amplitudes û and �̂. The numerical dispersion
relation is obtained from these equations and reads

(2 + cos k�x) sin
!
2
�t=

3
2
�t
�x

sin k�x (13)

A Taylor expansion of the numerical dispersion relation is straightforward and reads

!= k + 1
24k

3�t2 +O(�t4;�t2�x2;�x4)
which somewhat surprisingly shows that the accuracy of the dispersion relation is of fourth-
order in space and second-order in time. In the limit �t;�x → 0 we have != k which is
identical to the analytical dispersion relation != k. The unexpectedly high accuracy for this
particular case, with plane waves, constant depth, linear equations, and uniform resolution,
may be readily explained. First, the temporal alignment in (11) and (12) corresponds to what
is often denoted as a forward/backward scheme. The point is that we may re-interpret the �
nodes, for instance, as values taken at semi-integral temporal locations (n+ 1

2)�t. Apart from
boundary conditions, it appears that we in fact have an alternating midpoint discretization in
time which is of second-order accuracy. Still, this will not carry over to the general case with
nonlinear terms and where both the momentum and continuity equations are not discretized
on the same instant of the time dependent grid (refer to Section 3.1). The enhanced spatial
accuracy is due to a cancellation e�ect between the errors of consistent mass representation
of the time derivatives and the leap-frog formula for the x derivative. We may demonstrate
this by inserting an exact solution of the PDEs into (11) and (12), and evaluate the residual
R. Starting with a slight reorganization of (12) we �nd

R=
1
6�t

(
�n+1=2i−1 + 4�n+1=2i + �n+1=2i+1 − �n−1=2i−1 − 4�n−1=2i − �n−1=2i+1

)
+
1
2h
(uni+1 − uni−1)− @�

@t
− @u
@x

=
h2

6
@3�
@t@x2

+
�t2

24
@3�
@t3

+
h2

6
@3u
@x3

+O(�t4;�t2h2; h4)

=O(�t2;�t2h2; h4)

where the O(h2) terms in the mid-line cancel out because u and � ful�ll the continuity equation
@�=@t + @u=@x=0. The same analysis applies to the momentum equation (11). However, in
general we can expect only second-order accuracy in h.
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The stability criterion is also found from (13), and it follows that
∣∣∣∣ 3C sin k�x4 + 2 cos k�x

∣∣∣∣ 6 1

where C=�t=�x is the Courant number. Hence the stability criterion becomes C 6 2
√
3=3 ≈

1:15.
Unfortunately, the very high accuracy for the dispersion relation found above do not apply

to the full nonlinear scheme. The temporal discretization of Equation (8) is of �rst-order. In
addition, taking the nonlinearities and the varying depth into account suggest that the method
generally is of �rst-order accuracy in time and of second-order in space. In particular cases
with complex shoreline dynamics, the application of the alpha shape concept may even reduce
the spatial accuracy below second-order. Con�rmation of the �rst-order accuracy in the time
increment is demonstrated by the example of eigen oscillations in elliptic basins (refer to
Section 3.1).

3. VERIFICATION

3.1. Eigen oscillations in an elliptic basin

For eigen oscillations in parabolic basins in particular, simple analytical solutions are available
from the literature [18]. In relation to the scaling (1) we assume that both horizontal half axes
equal L and that the maximum depth is h0. The non-dimensional depth becomes h=1−x2−y2.
For the lowest mode with motions only along the x-axis the solution is given by

u= − a! sin!t; v=0 (14)

�=2a cos!t
(
x − 1

2a cos!t
)
; !2 = 2 (15)

where a is the non-dimensional amplitude. The instantaneous shoreline remains a circle in
the horizontal plane with radius 1 and centre at (a cos !t; 0). As seen from (15), the wave
elevation is a planar surface, and the �uid sloshes back and forth in the basin. The initial
shoreline and the wave elevation at some selected times are plotted in Figure 3 for a=0:5.

Figure 3. Eigen oscillations in elliptic basins. The bold line in (b) is the bottom: (a) the shoreline for
t=0; and (b) analytical solution for the wave elevation at di�erent times (T is the period).
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246 J. BIRKNES AND G. PEDERSEN

Figure 4. Eigen oscillations in elliptic basins. The error for the wave elevation measured in the L2-norm,
normalized by the time increment, is shown for �t=0:02 (dash-dot line), �t=0:01 (dashed line) and

�t=0:005 (solid line). The number of nodes is 547 for all cases.

Figure 5. The initial grid (547 nodes) for the problem of eigen oscillations in elliptic basins.

Some methods [33] might capture the simple spatial structure of solutions like (15) exactly.
Nevertheless this is no guarantee for excellent performance in relation to other applications.
The present model does not reproduce the linear surface pro�le exactly due to the shoreline
boundary. The deviation is mainly dependent on the time increment and its L2-norm is dis-
played in Figure 4. We de�ne the L2-norm according to ‖e‖L2(�) = (

∫
� e

2 d�)1=2 where e is
the di�erence between the exact and the numerical solution. The �rst-order temporal accuracy
is demonstrated in Figure 4 for a=0:5. Figure 5 shows the initial mesh where only half of
the �uid domain is discretized due to the symmetry of the problem.
This problem is almost una�ected by the arti�cial di�usion introduced in (2)–(3) since

the instantaneous analytical solution for the velocity is constant and the wave elevation is
linear. For the result in Figure 4 we have used �=1:0× 10−3. A reduction of � to 1:0× 10−4

changed the results for the L2-error for the wave elevation by less than 6 per thousand.
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Figure 6. Analytical (dashed line) and numerical wave elevation (solid line) for dam break shown at
t= {0; 0:2; 0:4; : : : ; 1}. The bullets show the node positions near the water front.

3.2. The broken dam problem

The breaking of a dam has a simple closed form solution when assuming hydrostatic pressure.
For details we refer to Reference [46]. Applying the scaling introduced in (1), the solution
for t ¿ 0 and −t 6 x 6 2t is given by

�=
1
9

(x
t

− 2
)2

and u=
2
3

(
1 +

x
t

)

For x¡ − t and x¿2t the solution is �=1 and �=0, respectively, and the corresponding
velocity u is zero. A wall condition is imposed at x= − 1 for the numerical simulations to
avoid an in�nite length of the domain. For this reason the comparison between the numerical
and analytical solution is only valid for t 6 1.
Figure 6 shows a comparison between the exact and the numerical solution. Small di�er-

ences are observed at x= − t where the analytical solution has a break, and at the water front
x=2t. Reduced arti�cial di�usion and �ner grids would decrease this error. For this case the
number of nodes is 400 in the x-direction, corresponding to element lengths of 2:5× 10−3,
and the time step is 6:2× 10−4. Initially the nodes are evenly distributed. The bullets in Figure
6 show the nodes at the water front for the numerical simulation. We see that the distance
between the nodes increases while the water front moves in the x-direction, meaning that the
elements in the front are stretched.

3.3. Long wave run-up

For run-up on a beach we compare the PFEM with the �nite di�erence method (FDM) by
Pedersen and Gjevik [32]. The geometry is shown in Figure 7. For this example the water is
initially at rest and the wave is generated by a wave piston located at the left of the wave
tank. The velocity of the wave piston is de�ned by

vP=

⎧⎨
⎩
VP
2
(1 + cos(2�t=T − �)) if t 6 T

0 otherwise
(16)
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Figure 7. The numerical wave tank which has been used for comparing
the present code against a �nite di�erence model.

Figure 8. Run-up on a linear beach: (a) a comparison between the �nite di�erence model [32] and
the present work. Results are shown for t= {3:0; 3:25; : : : ; 4:5} and the smallest and largest run-up
are for t=3:0 and t=4:5, respectively. Solid and dash-dot lines: The �nite di�erence model and
the present work (800 nodes). On this scale it is impossible to distinguish these curves from each
other. Dashed line: simulation with 190 nodes and �=1:0× 10−3; and (b) two close-ups of the
wave elevation near the beach, as indicated by the small boxes in (a), for t=3:75 and 4. The
results are shown for three di�erent grid resolutions: 200 (dash-dot line), 400 (dashed line) and

800 (solid line). The symbols (•; ∗; ◦) show the node positions.

where VP is the maximum velocity of the wave piston and T is the period. We have employed
the scaling (1) with h0 as the maximum equilibrium depth and L= h0 cot �, where � is the
beach inclination. Non-dimensionally, we then obtain a 1 in 1 slope and the slope ends at
an o�-shore depth equal to 1. Moreover, the length of the horizontal bottom is set to 1:5,
VP=0:05 and T =3.
The results are shown in Figure 8. The panel 8(a) shows the comparison between the FDM

model and the present model with no arti�cial di�usion. Instead a 5-point smoothing formula
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has been applied at time intervals of 0:05. For both simulations the mesh has 800 nodes
corresponding to element lengths of order 3:1× 10−3 and the time step for the FDM model
is 2:08× 10−3, while it is 7:81× 10−4 for the present model. For the reference frame chosen
in Figure 8(a), it is impossible to distinguish between the two methods. The e�ect of the
arti�cial di�usion is illustrated with the dashed curve in Figure 8(a) where � = 1:0× 10−3.
Both the di�usion coe�cient and element lengths (of order 0.013), as well as the time step
(6:25× 10−3), correspond to those of the three-dimensional run-up cases in Section 4. The
e�ect of di�usion is generally very negligible, even though small di�erences are evident close
to the beach and the maximum run-up is reduced from 0.192 to 0.190.
Two close-ups of the long wave run-up near the beach are shown in Figure 8(b) for t=3:75

and 4, displaying the mesh dependence. Three meshes with 200, 400 and 800 nodes have been
used. For t=3:75 some di�erences are observed in the vicinity of the beach, but otherwise
the three curves more or less coincide. Also observe that the run-up results from the dense
mesh has some very short scale features near the beach. A similar feature was reported by
Jensen et al. [39], who applied a Boussinesq model for simulating run-up on a linear beach.
However, at a later stage, t=4, the di�erences between the results from the two �nest meshes
have vanished, while the results from the coarsest mesh still di�ers from the other two. For
these simulations the time step is 3:125× 10−3 for the coarse mesh, and for the medium and
�ne mesh the time step is reduced to one half and one quarter, respectively. The symbols in
Figure 8(b) show the node positions near the beach for the three grids.

4. SIMULATIONS

4.1. Dam break of a cone

The classical solution for the breaking of a dam is physically two-dimensional. To include
three-dimensional e�ects one may study the dam break of a vertical cone of water with a
circular base. Initially the radius and the height of the cone are both set to 1 (non-dimensional
unit). Due to the symmetry of the problem, the computational domain is limited to one quarter
of a circular disc. We have employed three di�erent grids with 80, 1099 and 2226 nodes,
respectively. This corresponds to typical element lengths of 0.11, 0.03 and 0.02. Time steps
are chosen as 0.033, 9:0× 10−3 and 7:0× 10−3, respectively, and the initial grid, with 1099
nodes, is shown in Figure 9.
Surface pro�les, along the line y= x, are displayed in Figure 10. It is almost impossible

to distinguish between the results from the two �nest grids, while some discrepancies are
observed for the coarsest discretization. Due to the symmetry of the problem, the water front
should be circular for all times, and this is con�rmed by Figure 11 which shows the water
front given by �+ h=0.

4.2. Run-up on three-dimensional beaches

Long wave run-up on three-dimensional beaches will be simulated in a numerical wave tank
as illustrated in Figure 7. Two di�erent geometries, with and without an idealized hill on the
shore, are considered. Both can be expressed as

h(x; y)= q(x − s(y)) + �(x; y); s(y)=B exp
[
−

(y
r

)2]
(17)
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Figure 9. The initial grid (1099 nodes) for the problem of dam break of a cone.

Figure 10. Dam break of a vertical cone. The wave elevation is shown for y= x and
t= {0; 0:2; : : : ; 1} for three di�erent grid resolutions: 80 nodes (�), 1099 nodes (dashed
line) and 2226 nodes (solid line). Note that it is almost impossible to distinguish between

the results from the two �nest grids.

where s de�nes a gentle bay or headland, � may represent a hill (sand-dune), and

q(�)=

⎧⎪⎨
⎪⎩
(tan �)� if � ¡ cot �− l
1− tan �

4l
(�− cot �− l)2 if − l ¡ �− cot � ¡ l

1 if � ¿ cot �+ l

(18)

In the expressions above, the protrusion of the headland=bay is B, its width is of order 2r,
and the beach inclination is �. Note that the beach is a headland if B is positive and a bay
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Figure 11. Dam break of a vertical cone. The curves show the water front in the xy-plane for
t= {0; 0:2; : : : ; 1}. The corresponding wave elevation is shown in Figure 10. Grid resolutions: 80

nodes (�), 1099 nodes (dashed line) and 2226 nodes (solid line).

if B is negative. There is a transition zone between the horizontal bottom and the beach, and
the half width of the transition interval is l, which is a small quantity. In our simulations we
have chosen l=0:01 cot �. The hill is of Gaussian shape with height a, radius r0 and centre
at (x0; y0)

�(x; y)= a exp
[
− (x − x0)2 + (y − y0)2

r20=4

]
(19)

The bathymetries of the headland (a=0, B ¿ 0) and the bay with a hill (a ¿ 0, B ¡ 0) are
shown in Figure 12. All input parameters and grid characteristics for the simulations are listed
in Table I. For both cases, grid re�nement tests have been performed, with approximately
twice as many nodes in the �ne grid, as compared to the coarse one. Figure 13 shows the
initial coarse grids for both depth bathymetries.
The case with the hill geometry becomes severely infested with noise, unless smoothing is

applied. Therefore, we employ the arti�cial di�usion with �=1:0× 10−3. Both wavelengths
and depth gradients are similar to those in the plane case of long wave run-up (refer to
Section 3.3), and an indication of the in�uence of the di�usion may then be inferred from
Figure 8(a).
In principle, the presence of sidewalls extend the computational domain to an in�nite region

with a periodic bathimetry and repeated lines of symmetry. Furthermore, the grid generator
traverses the nodes in a given sequence and both the triangulation and the solutions depend
slightly on this. Therefore, we may observe deviations from perfect symmetry around y=0,
in particular for the coarser grids.
The geometry consisting of a hill on the beach o�ers some resemblance with a standard

problem in the run-up literature, namely that of run-up of solitary waves on a conical is-
land. Experiments were reported by Briggs et al. [47] and the �rst theoretical approach by
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Figure 12. Two di�erent geometries: (a) is the headland; (b) and (c) present the bay with a Gauss hill.
The dotted and the bold lines indicate the still water level.

Table I. Parameters for the wave piston, the headland/bay
bathymetry, and the Gauss hill, as used in the run-up simulations.

Case 1: Case 2:
Parameter Headland Bay with Gauss hill

T 3 3
VP 0.05 0.05
B 0.1 −0:1
r 0.25 0.25
� 37.5 37.5
a 0 0.3
x0; y0 — 0.1, 0
r0 — 0.15
� 3.0 2.0 (coarse grid)

2.5 (�ne grid)
� 0.5 0.5
� 0.001 0.001
Coarse grid 4732 nodes, �x ≈ 0:021, �t=7:1× 10−3

Fine grid 10 336 nodes, �x ≈ 0:013, �t=2:6× 10−3

Note: All parameters are non-dimensional, except for the angle � which
is given in degrees. �x is a typical element length. The � parameter
refers to Equation (10).
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Figure 13. The initial coarse grids (4732 nodes) for the run-up simulations shown for x ¿ −1:
(a) headland; and (b) bay with a Gauss hill.

Liu et al. [22]. This case has served as a kind of benchmark problem for recent numerical
models [24, 30, 31, 48]. Even though the problem has been addressed with hydrostatic models,
accurate predictions require a Boussinesq type model for propagation of the incident wave. On
the other hand, the run-up may be fairly well described by linear theory, save the interference
phenomenon on the rear side of island. Adding that this case does not involve merging of
shorelines, we have regarded it as a less appropriate test in the present context.
The wave run-up on the headland is shown in Figure 14 at four selected times, t= {3:3; 4:2;

4:6; 5:9}. Plots for the �uid velocity at t=3:3 shows the wave focusing on the headland.
At a later stage, t=4:2, the maximum wave elevation on the headland occurs and the maxi-
mum wave elevation is four times the undisturbed, non-dimensional wave amplitude of 0:05.
Since the headland width is rather narrow compared to the length of the incident wave, the
focusing is not very strong. Instead the wave will spread around the headland, and continue to
inundate the beach near both walls reaching its maximum wave elevation of 0:233 at t=4:6
which is 4:66 times higher than the undisturbed wave amplitude. After reaching this maxi-
mum, the wave will withdraw from the beach and there will be a secondary run-up at a later
stage. This is shown at t=5:9, where we observe a second run-up on the headland while the
�uid at both walls are retreating down from the beach. A comparison between the coarse and
the �ne grid is shown for the boundary nodes in the left column and only small di�erences
are seen. Furthermore, the maximum run-up for both grids are shown in Figure 16 where
only small di�erences of approximately one percent are seen. The maximum run-up in the
centre of the tank is 0:205, while it is 0:230 at the walls. The same �gure also shows the
maximum run-up for the bay with a Gauss hill for both grid resolutions. Di�erences of up to
�ve percent are observed for this bathymetry with maximum run-up of 0:228 at y= ± 0:2.
Figure 15 displays the wave run-up in a bay with a Gauss hill on the beach for the times

t= {3:6; 4:2; 4:8; 5:1}. The �gure illustrates the process of generating a hole in the computa-
tional domain as well as the wave run-up. At t=3:6 the wave is approaching the hill, and
at t=4:2 the wave has almost surrounded it. Afterwards, the shorelines from each side will
merge behind the hill. The water will continue to �ow around the hill building up a mound of
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Figure 14. Run-up on a beach with headland shown for t=3:3 (upper row), t=4:2, t=4:6 and
t=5:9 (bottom row). The left column shows the boundary nodes for two grids: + (10 336 nodes);
� (4732 nodes), the middle column shows the wave elevation, and the right column shows the

vector plots for the �uid velocity.
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Figure 15. Run-up in a bay with a Gauss hill shown for t=3:6 (upper row), t=4:2, t=4:8 and
t=5:1 (bottom row). The left column shows the boundary nodes for two grids: + (10 336 nodes);
� (4732 nodes), the middle column shows the wave elevation and the right column shows the

vector plots for the �uid velocity.
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Figure 16. Maximum run-up, �+h=0, on the headland pro�le (�ne grid: solid line; coarse grid: dashed
line) and the bay with a Gauss hill (�ne grid: bold solid line; coarse grid: bold dashed line).

Figure 17. Maximum inundation on the headland pro�le (solid line)
and the bay with a Gauss hill (dashed line).

water, which is seen for t=4:8. While the �uid withdraws elsewhere, this pile will produce
a secondary run-up, as seen for t=5:1. Physically this is similar to a local dam break. Like
the headland case, a grid re�nement test has been accomplished. The boundary nodes at the
beach are shown in the left column of Figure 15 for both the coarse and the �ne grid. Again,
good general agreement is observed. Still, we notice the local deviations in the secondary
run-up and the poor representation of the dry region caused by the hill for the coarse grid,
refer to Figure 18. One cure would be to insert new nodes in regions where a �ne resolution
is needed, as discussed in Section 2.2. This would have to be done in a systematic manner,
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Figure 18. Two grids at t=5:1 for run-up in a bay with a Gauss hill:
(a) coarse grid; and (b) �ne grid.

based on local grid parameters. We believe that this is feasible, but far from straightforward.
An alternative would be to perform a total re-meshing at times, but this is in not in line with
the general idea of the PFEM method. A third option would be to map regions with sparsity
of nodes back on the initial grid, and then re�ne these regions from the beginning in a new
simulation. This is the simplest procedure, but is probably useful only when the regions that
require higher resolutions are few and easily detected, which points to simple bathymetries
and short simulation times. None of the options have been systematically investigated in the
present work.
Following the shoreline, � + h=0, it is possible to extract the maximum run-up and

inundation on the beach. The maximum run-up across the wave tank is shown in Figure
16 for both geometries. For the headland case, the maximum run-up occur at the centre
of the tank and at the walls. Not surprisingly, the situation is di�erent for the bay with a
Gauss hill, which causes the wave to travel around it, and the maximum run-up occurs for
approximately y= ± 0:2. The corresponding maximum inundation is shown in Figure 17 for
both beaches. For the headland case the maximum inundations occur at the walls. It is worth
noticing that the local maximum run-up in the centre of the tank, refer to Figure 16, does
not correspond to a maximum for the inundation due to the beach slope steepness. For the
bay with a hill, the maximum inundation takes place at the same locations as the maximum
run-up.
The PFEM does not conserve volume exactly. We de�ne the normalized volume de�cit

as M̃ (t)= (M (t) −M (0))=MR(t), where M (t) is the total volume at time t, and MR(t) is a
reference volume chosen as the volume displaced by the wave piston. MR equals the horizontal
displacement of the paddle, given as the time integral of (16) from 0 to t, muliplied with
the paddle width and the equilibrium depth. Naturally, MR corresponds to the net elevated
volume under the incident wave. The quantity M̃ (t) is displayed in Figure 19 for both depth
bathymetries and grid resolutions. For the case of the headland bathymetry, Figure 19(a), the
volume is almost una�ected by the grid resolution. From the �gure it is observed that the
volume is relatively constant for t ¡ 3. After t=3 the wave starts running up the beach
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Figure 19. Mass conservation M̃ (t)= (M (t)−M (0))=MR(t) for long wave run-up on two di�erent beach
pro�les. The dashed line is for the coarse discretization and the solid line is for the �ne discretization,

refer to Table I: (a) headland; and (b) bay with a Gauss hill.

and the volume decreases �rst before it starts increasing at about t=3:5. At the end of the
simulation, M̃ is increased to roughly 0:005.
The situation changes slightly for the bay with a hill, refer to Figure 19(b). For t ¡ 4:5

the volume is una�ected by the grid resolution. However, after this time the two curves dif-
fer and the coarse grid results in a greater loss of volume than the �ne grid. Before t=5:5
the volume, M̃ (t), is reduced by 3:0% at most for the coarse grid and 1:6% for the �ne
grid. Physically, the �uid has just enclosed the hill at t=4:5 and afterwards the �uid builds
up a pile of water behind the hill, refer to Figure 15. This suggests that the node distribu-
tion in the coarse grid is too coarse to capture the correct shoreline, resulting in a loss of
volume.

5. CONCLUSIONS

In short, the numerical model is composed of four parts: the �nite element method, boundary
capturing by using alpha shapes, a time marching scheme, and dynamic meshing.
As demonstrated in the comparisons with other models and analytic solutions, the method

computes simpler shoreline motions with good accuracy. Moreover, in the more demanding
example with a hill on the beach, it demonstrates the ability to reproduce more complicated
dynamics as merging shorelines and the presence of dry patches of higher land surrounded
by �uid. Such features are not likely to be reproduced by the traditional Lagrangian, or ALE,
techniques referenced in the introduction.
However, the application of the alpha shape concept is not without pitfalls. It is not trivial

to identify the correct boundary nodes. A rather �ne grid is required to yield the correct
shoreline and run-up dynamics. Coarse grids easily lead to wrong connectivity of the �uid
boundary, and even spurious ‘holes’ within the �uid in regions with large dilution or stretching
of the particle distribution. These problems will also be present in other applications of the
method, such as Navier–Stokes modelling. One remedy might be to combine the application
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of the alpha shape concept with physical characteristics of the boundary, which, in our case,
is a vanishing �uid depth.
As formulated here, the method does not conserve mass in an exact manner. Yet we have

no indications of this being a serious drawback for the present kind of applications. The
mass de�cits are small and mainly linked to the shoreline motion. This is a feature which
the present method has in common with several other new techniques for long wave run-up,
as for instance References [24, 30, 31]. One should also bear in mind that in a real case of
tsunami run-up, the �ooded beach generally must be regarded as porous and a signi�cant loss
of volume in the swash may follow.
Formally, the PFEM formulation is of �rst-order in the time increment and second-order in

space, save for e�ects due to application of the alpha shape concept. The former implies em-
ployment of very small time increments, and should be improved. Application of higher order
elements on the other hand, is far from straightforward within the frame of PFEM. Improved
spatial accuracy should instead be sought by adaptive re�nement and through introduction of
new nodes, particularly near the shore. We have so far not exploited this possibility, but the
PFEM method should be better suited for such approaches than a traditional FEM method,
let alone the FDM techniques.
One interesting aspect for future development is to include wave dispersion in a Boussinesq

type model. This should be fairly straightforward. Furthermore, it is also desirable to imple-
ment a robust technique for handling of wave breaking. An attractive choice would then be
the method of a wave-steepness dependent di�usion which has recently been employed with
promising results [30, 31].
In its present form, the PFEM method has shortcomings, particularly concerning the bound-

ary detection. Still, it yields promising results for cases where traditional methods (e.g. stan-
dard Lagrangian methods) easily fail. Thus it seems worthwhile to explore the method further.
Two lines of improvements immediately present themselves, namely adaptive re�nement and
the combination of the alpha shape concept with physical properties of the boundary.
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